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Effect of Dynamical Diffraction in X-Ray Fluorescence Scattering 
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With a conventional double-crystal spectrometer, we have obtained direct evidence for the formation of 
the two types of standing-wave fields formed within the crystal during the diffraction process. As a ger
manium crystal was rotated through the Bragg-reflection region the fluorescence scattering as well as the 
diffracted beam was measured. The reflected beam gives the expected Darwin-Prins curve, while the fluo
rescence curve (a dip at the Bragg angle), is asymmetric with a long tail on the low-angle side. The fluores
cence, in this case, is used as a measure of the electric-field intensity at the atomic electrons, and the asym
metry implies that there is less x-ray intensity in the diffracting planes of atoms at low glancing angles 
than there is at high angles. This is consistent with the dynamical theory prediction of the formation of a 
nodal plane of the x-ray wave field at the atoms at low glancing angles and an antinode at high angles. We 
show that the antinode forming at the high-angle side can produce a marked enhancement of the fluores
cences over that produced when no diffraction is taking place. Very good agreement between experimental 
fluorescence intensities and that predicted by dynamical theory was obtained. 

INTRODUCTION 

IF one Bragg diffracts perfectly collimated and 
monochromatic x rays from the face of a perfect 

crystal so that the reflected beam exits the crystal from 
the same face it enters (Bragg case), the intensity dif
fracted as a function of angle is the familiar Darwin 
curve. This is a top-hat curve which includes a range of 
total reflection typically the order of several seconds of 
arc. If the crystal is absorbing, the curve is somewhat 
rounded off, giving a region of almost total reflection 
and is now asymmetric with less intensity on the high-
angle side of the peak. The shape and intensity of these 
peaks have been experimentally1"4 verified and checked 
with theory. 

The dynamical theory of diffraction predicts not only 
the energy reflected by the crystal, but gives a detailed 
description of the distribution of this energy inside the 
crystal with respect to the scattering planes of atoms. 

Detailed experimental observations in the Bragg 
case have been carried out by Borrmann and co
workers4 and more recently by Bonse,5 who measured 
the weak intensity transmitted through a thin crystal 
diffracting in the symmetric Bragg case, and by 
Authier,6 who measured the beam leaving the lateral 
face of the crystal perpendicular to the diffracting face. 

In the present experiment we have attempted to 
check predictions of the theory concerning the distri
bution of x-ray intensity between the atomic planes. 
The present method7 is novel in that we use not the 
diffracted energy, but the fluorescence radiation of a 
diffracting atom to measure the dynamical effects in the 
crystal. The photoelectric absorption at an atom is pro-

1 M. Renninger, Z. Krist. 89, 344 (1934). 
2 M. Renninger, Acta Cryst. 8, 597 (1955). 
3 B . W. Batterman, J. Appl. Phys. 30, 508 (1959). 
4 G. Borrmann, Naturwiss. 38, 330 (1951); Z. Physik 142, 406 

(1955); H. Hildebrandt, Z. Krist. 112, 340 (1959); H. Wagner, 
Z. Physik 146, 127 (1956). 

fi U. Bonse, Z. Physik 161, 310 (1961). 
6 A. Authier, J. Phys. Radium 23, 961 (1962). 
7 A preliminary report was given in Appl. Phys. Letters 1, 68 

(1962). 

portional to the electric-field intensity seen by its ab
sorbing electrons. Therefore, it follows that the fluores
cence emitted in conjunction with the diffraction process 
will directly indicate the changing field intensity at the 
atomic planes as a function of Bragg angle. 

Of the available experimental possibilities, there 
appears to be a unique combination. Two important 
conditions to be met are that the crystal must be struc
turally perfect from the x-ray standpoint, and at the 
same time must be of a high enough atomic number so 
that its fluorescence can escape from the crystal and be 
readily detected by conventional means. Germanium is 
a unique crystal in that it is readily available in a highly 
perfect state, and its K fluorescence edge at 1.12 A is 
readily excited by Mo Ka radiation of 0.71 A. 

EXPERIMENTAL 

The experimental arrangement (Fig. 1) is basically 
that of a conventional double-crystal spectrometer with 
a few modifications. The first crystal diffracting the 
(220) of Mo Ka is asymmetrically cut [(220) planes 
making an angle of 8° with the surface], and arranged 
so that the diffracted beam makes the smaller glancing 
angle with the surface (approximately 2J°). We take 
advantage of the fact first shown by Renninger8 that 
such an asymmetric arrangement will reduce the in
trinsic reflection width of the first crystal by a factor 
of approximately sin(0—a)/sin(0+a), where a is the 
angle between the lattice planes and the crystal surface. 
For the 8° asymmetry this corresponds to a reduction 
factor of about 12. 

This now allows the instrument to trace out very 
nearly the intrinsic reflection properties of the second 
crystal, and avoids the necessity of convoluting two 
theoretical curves to make a comparison with the experi
mental results. Three Nal thallium-doped scintillation 
counters were used as detectors. One counter (wide 
open face) set as close as possible to the face of the 

8 M . Renninger, Z. Naturforsch. 16a, 1110 (1961). 
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FIG. 1. Parallel arrangement of double-crystal spectrometer 
with asymmetrically cut first crystal. 

second crystal was set to count germanium K fluores
cence. Since the energy difference between Mo Ka and 
Ge K is relatively large, any higher energy molybdenum 
radiation scattered into the counter could be discrimi
nated against electronically. Another counter set at the 
correct 20 position could simultaneously record the 
diffracted beam. The counter placed in front of the slit 
between the two crystals acted as a monitor counter for 
precise measuring of the fluorescence versus angular 
position of the crystal. The Mo target tube was run at 
40 kV and 25 mA. In a typical run the outputs of both 
the diffracted beam and fluorescence counters were 
chart-recorded as the crystal was rotated with uniform 
angular velocity through the range of reflection. 

QUALITATIVE RESULTS 

In Fig. 2 are the direct chart records of the fluores
cence and reflected beam counters. It is apparent that 
both curves are asymmetric. The reflected beam has 
lower intensity on the high-angle side of the reflection 
in agreement with the theoretical Darwin-Prins curve. 
The fluorescence curve at the reflecting position shows 
a large dip, to about J of the initial value, and has a 
long tail on the low-angle side which has still not 
reached the background fluorescence at some 10 peak 
half-widths from the center of the range of reflection. 

The asymmetry in the fluorescence curve is not a 
result of the asymmetrically cut first crystal. In our 
initial experiments7 the curve was quite similar to 
Fig. 2, even though both crystals were symmetrically 
cut and the reflection curve was the symmetric con
volution of two Darwin-Prins curves. The fluorescence 
asymmetry is a direct result of the dynamical inter
action of the x-ray wave field and atomic planes, and 
can be explained in a qualitative way as follows: We 
divide the ideal Darwin curve into three regions, the 
low- and high-angle tails, called (1) and (3), respec
tively, and the central region of total reflection, (2). 
According to dynamical theory, in region (1) the pri
mary and diffracted rays interact to form a wave field 
which produces a diminution of intensity in the atom 
planes. When the diffracted wave is strongest and equal 
to the primary wave at the (l)-(2) boundary, a node 
exists at the atoms. The situation is similar in the high-
angle tail except that there is an enhancement of in

tensity at the atoms leading to an antinode at the 
(2)-(3) boundary. Thus, in the tail regions where most 
of the incident energy is absorbed in the crystal (the 
reflected intensity is small), the effective linear absorp
tion coefficient is smaller than the normal value in (1) 
and larger than this in (3). Hence, for the tail regions, 
the primary beam will be absorbed in a greater depth 
in (1) than in (3). Since the fluorescence is the result of 
this absorption, it will be weaker when it exits the 
surface in region (1) because of a larger self-absorption 
due to the longer crystal path it must travel to get out. 
In region (3) there is less self-absorption because, due 
to the antinode formation at the atoms, the fluorescence 
is created nearer the surface. In the central region, the 
large fluorescence dip is merely a result of energy con
servation. Here the reflected beam is quite strong and 
consequently little energy enters the crystal to produce 
fluorescence. In fact, Fig. 2 shows that the dip is almost 
a mirror reflection of the diffracted beam. The dominant 
factor in determining the fluorescence in (2) is the 
energy allowed to enter the crystal. 

In a qualitative way, we have shown that the asym
metric fluorescence curve is a direct result of the two 
types of wave fields predicted by the dynamical theory. 
In the next sections we investigate this wave field 
quantitatively and explain physically some of the details 
of the fluorescence curve. 

QUANTITATIVE THEORY 

The fluorescence scattering received at the detector 
as a function of angle of incidence is determined by the 
absorption coefficient /X(T?) of the wave field inside the 
crystal, where 77, to be defined later, is proportional to 
the glancing angle of the incident beam, rj is included 
here to emphasize the fact that the absorption of x rays 
now depends upon the diffraction conditions. The 
amount of K fluorescence of a germanium atom will be 
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FIG. 2. Chart recordings of fluorescence and diffracted beam 
counters. The theory points have a single scaling factor. For the 
diffracted beam the match is made at h, the primary beam in
tensity, while the fluorescence curve is matched at the horizontal 
tails. 



D I F F R A C T I O N I N X - R A Y F L U O R E S C E N C E S C A T T E R I N G A 7 6 1 

PRIMARY 
BEAM \ 

FLUORESCENCE 
RADIATION 

dm 

FIG. 3. Volume element used to compute the fluorescence 
leaving the crystal. 

proportional to \x(y\) which represents loss per unit 
length, even though some of the incident energy loss is 
converted to higher shell fluorescence, Compton x rays, 
and phonon scattering. 

Conservation of energy demands that the energy ab
sorbed in the crystal is proportional to (1 — R2), where 
R2 is the ratio of energy in the diffracted beam to the 
incident beam and is therefore the Darwin-Prins re
flection curve. The energy / , reaching a depth Z 
(Fig. 3), is thus proportional to ( l — i ? 2 ) ^ ^ ^ , where 
\iz{y\) is the dynamical absorption coefficient with 
respect to the normal to the crystal surface. We can 
therefore write for the energy loss between Z and 
Z+dZ, 

dI~(l-R2)vz(y))e-»zMzdZ. 

A large fraction of this energy will produce K fluores
cence distributed equally in all directions. That fraction 
sent in the conical volume element shown in Fig. 3 is 
\ sin cpdip which, upon reaching the crystal surface, has 
been attenuated by an additional factor of e~^z SQC(p, 
where ju/ is the linear absorption coefficient of the 
fluorescence radiation; i.e., Ge Ka or Kp. It follows that 
the total fluorescence leaving the crystal in any angular 
range <pi to <p2 for a given incidence angle t\ is 

(1-R2) 
If(r)) = C fiz(v) 

-ff e-HZ(r,)Ze-nfZ sec? S[n(pd(pdZ , (1) 

where C is a proportionality constant. If we define 

X=ixf/fj,z(v)f (2) 

Equation (1) integrates to 

//&7) = C-
i~R2r 

COS(pi— COS<£>2+X 
X+COS<p2~] 

l n I 
X + c o s < p i J 

(3) 

(<pi=0 to <PZ=T/2) is 

1-R 

M , ) = c^_[1 + X 1»( ) ] . (4) 

If ju/=0; i.e., there is no loss of fluorescence due to 
self-absorption, (4) reduces to C(l—R2)/2 which simply 
states that the shape of the fluorescence curve is the 
complement of the Darwin-Prins curve. 

The angles (pi and <p2 are determined strictly from the 
acceptance range of the scintillation detector. For the 
experimental arrangement in Fig. 1 which gave the 
curves in Fig. 2, <pi=0 and <£>2=40.5°. 

To evaluate (3) from theory we need R2 and the dy
namical absorption coefficient /i(^). According to dy
namical theory,9 for the symmetric Bragg case, the 
wave field inside the crystal for a given angle of inci
dence can be expressed as two plane waves traveling 
with amplitude Do in the primary beam direction (very 
nearly) and D# in the diffracted beam direction: 

£>o = D0 exp ( - 2iriK^ • r) exp ( - 4TTK0" • r) , (5a) 

£>H = VH exp ( - 2iriKH' • r) exp ( - 47rK0" • r) . (5b) 

The complex wave vector K=K'—iK" includes the 
absorptive term due to the imaginary part, — K0", 
which is the same for both waves. To arrive at the 
fluorescence produced by the wave field of Eq. (5a) 
and (5b), we must explicitly evaluate the damping 
term exp(—47rK0

//«r) or, in particular, the complex 
part of the wave vector, — K0". 

The complex equation defining the dispersion surface 
is [see James' Eq. (8.35)] 

UH=WP2T2FHFH , (6) 

where FH and FH are the structure factors of reflections 
(hkl) and (hM), respectively, ( F t f = / V + * i V ) , 
T= (e2/mc2)\2N/T, P= 1 or cos20 for the a and w states 
of polarization, N is the number of unit cells per unit 
volume, and k=l/\. The real part of the dispersion 
surface with the crystal surface oriented for the sym
metric Bragg case and one state of polarization is 
shown in Fig. 4 in terms of the real coordinates £0' and 

For the real parts, the £ represents the difference 
between the actual wave vectors K0' and Ki/associated 
with the tie point A and the vacuum wave vector k 
corrected for the average index of refraction; i.e., 
k(l—(l/2)TFo'). For the complex treatment it can be 

The total fluorescence leaving the upper surface 

9 The theory, as presented in this section, cannot easily be ex
pressed in terms of notation and equations which can be referred 
to a single source. An up-to-date treatment of the theory is in the 
process of being published. To fill in the gaps in the present treat
ment, we shall refer to the material in Chap. 8 of R. W. James* 
The Optical Principles of the Diffraction of X-Rays (G. Bell and 
Sons, London, 1950). The equations quoted in this paper will be 
expanded or modified forms of those in James' book. 
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we have finally for iiz(y) 
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FIG. 4. Dispersion surface oriented for symmetric Bragg reflection. 

shown that 

2*{0= (K0- K 0 ) 1 / 2 - £ [ l - (V2) r F 0 ] , (7a) 

2HH= (KH.KHy»-ktl- (l/2)TFol, (7b) 

where K and Fo are complex quantities. The complex 
part of the inside wave vector — K0", is a vector per
pendicular to the incident surface of the crystal since 
planes of constant absorption are parallel to this 
surface. I t follows from this and Eqs. (7a) and (7b) that 

Ko"=t-Zo"+(l/2)kTF,n/y0, (8) 

where 70 is the direction cosine of the incident beam 
with respect to the inward surface normal. We have, 
in evaluating the square root in (7), treated | Ko" | /1 K<{ |, 
which is typically the order of 10~6 as a second-order 
quantity. For the symmetric Bragg case 

£0= (l/2)k\P\T(FHFH)m\j,±(ni-l)1'*l, (9) 

where 

7J = -

-A0sin20+r^o 

V\P\[_FHFHJ'2 'W+iri". (10) 

The complex Eqs. (9) and (10) can be obtained with 
some algebra by combining Eqs. (8.39), (8.46), and 
(8.47) in James.9 

Since — Ko" is normal to the crystal surface we have 
from Eq. (5) 

4 i r X / = /izfo) . (11) 

Inserting the complex part of (9) in (8), and using the 
fact that the normal linear absorption coefficient is 

)=-h /*z0?) = —I 1-
ToL 

\P\Im\~lvMri2-l)ml\ I, (13) 
I-TO []• 

where Im signifies the imaginary part of the argument. 
Equation (13) is valid for a centrosymmetric crystal 
where FH= FH, and where the crystal surface is parallel 
to the diffracting planes. 

The reflection coefficient R2= \DH/D0\
2 can be ex

pressed simply [James9 (8.60)] in terms of a complex 77, 

B*=\ri±(r?-1) 1/21 (14) 

Since (Fo"/FH') for the 220 reflection of germanium is 
the order of (0.07), we can simplify expression (10) for 
i] by neglecting squares of this quantity in comparison 
to unity, giving 

v'= ( -A0 s in20+I7V)/ \P\TF H ' , (15a) 

/i0=2ir*rFo / ' , (12) 

, * = ( l / | i > | ) ( F o V ^ ' ) ( l - U , « | i , | ) , (15b) 

where €—FH'/FQ" is the angular dependence of the 
imaginary part of the structure factor. 

In the present experiment there are four separate 
fluorescence sources and hence four values of //(??) at 
each position 77. The a and T polarization states are ab
sorbed differently because \P\ is a part of rj, and each 
of these states produces both Ge Ka and Ge K$ radia
tion. The combined If(rj) is now proportional to 

If(r,)~If'(Ka)+\cos2e\If*(Ka) 

+p(If'(Kp)+\cos20\If*(Kfd, (16) 

where ft is the relative intensity of the Ge Ka to the 
Ge Kp fluorescences. (The |cos20| term results from 
polarization by the first crystal.) 

The absorption coefficients of Mo Ka, Ge Ka, and 
Ge K^ were experimentally determined in thin single 
crystals of germanium using a fluorescence spectrometer 
as the x-ray source. The ratio fi was determined by 
directly measuring the intensities of the Ka to Kp for 
a thin specimen of germanium powder. A summary of 
the parameters necessary for the calculation of R2 and 
If is given in Table I. 

For a given value of r[ between —50 to + 5 0 , 
Eq. (15b) was evaluated for 17". R2 is then directly de-

TABLE I. Experimental and theoretical constants used to cal
culate fluorescence scattering. The mass-absorption coefficients 
refer to the stated wavelength in germanium. 

/xp(MoiQ=:59.9cm2/g 
M p(GeZ a)=37.2cm2 /g 
/zp(Gei^)=27.8cm2/g 

€ = 0.964a 

/o(Ge 220) = 23.82b 

0 = 0.143 

a This value was obtained from H. Wagenfeld, J. Appl. Phys. 33, 2907 
(1962), using a Debye temperature of 290°K. 

b A. J. Freeman, Acta. Cryst. 12, 929 (1959). 
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termined from (14) using the algebraic sign for each of 
the three ranges (??'<-1, — 1 < T / ' < + 1, i / > l ) such 
that R2 is always less than unity. Similarly, for each rj', 
ixz(ri) is calculated according to (13) which gives an 
If [Eq. (4)] for each polarization and each of the two 
JT-emission lines. The If were then summed according 
to (16) to give the expected fluorescence curve. 

The points in Fig. 2 are the results of the theoretical 
computation. The angular width of the theoretical 
curve is directly determined from Eq. (15a). The only 
adjustable parameters are the vertical scale factor and 
the horizontal position of the curve. It can be seen that 
the agreement in the tail regions is quite good. The long 
tail at the low-angle side is accurately matched as well 
as the relatively abrupt rise to the fluorescence back
ground at the high-angle side. The agreement is not as 
good in the central region where strong diffraction is 
taking place. This is due to a combination of effects. 
Because of the sharpness with respect to reflection angle, 
broadening due to the first crystal, misalignment of the 
two crystals, and any intrinsic crystalline imperfection 
would be most pronounced in this region, and would 
tend to reduce the reflection coefficient and broaden 
the curves. 

FURTHER RESULTS AND DISCUSSION 

One interesting feature of the fluorescence curve is 
the large angular range necessary for the low-angle tail 
to approach background. This is somewhat surprising 
since the reflection curve has approached its background 
considerably closer to the peak. Since details of the re
flection and fluorescence curves are intimately con
nected with the diffraction process it is at first surprising 
that the diffracted beam has gone essentially to zero 
and yet the fluorescence has not yet reached the value 
expected for no diffraction. 

In Fig. 5 we give a more detailed measurement of the 
tail regions of the fluorescence curve. The data are 
point counts relative to the monitor counter for a given 
angle of incidence. To reduce drift errors, several meas
urements at each point were made with the angle re
peatedly reset relative to the center of the diffraction 
curve. The estimated precision for each point is 
±0.15%. The theoretical curve was fitted as in Fig. 2. 
Note the expanded vertical scale in Fig. 5. Most of the 
fluorescence in this figure corresponds to the very weak 

tails of the diffracted beam. We see again a rather good 
fit with theory and definite proof of the very long tail 
on the low-angle side. 

The physical reasons for this tail are made clear if one 
calculates the field intensity in the atomic planes. If we 
neglect the damping term in Eqs. (5a) and (5b), the 
total electric displacement in the crystal is Do+D#= D 
and the intensity proportional to DD*. Thus, 

D2=|Do+Dtf |2HDo|2 

+ |D*|2+Do-Da COS2TT(X/J) , (17) 

where we have used Bragg's law in the form 
KH'—K0

/=H, where \U\ = (d spacing)"1 and x is 
distance normal to the diffracting planes. For the (220) 
reflection measured here, all the atoms scatter in phase, 
and the complex phase of the amplitudes Do and D# 
will be such as to form nodes or antinodes at the atomic 
planes (i.e., where x=0, d, 2d-") so that (17) becomes 
for the a polarization 

V)[l 
, 2 D , D, an 

D2= (Do2+D*2) 1± cos27T- . 18) 
1+(D„/D0)2 dJ 

- 40 -20 0 20 40 
6 IN SECONDS OF ARC 

FIG. 5. Point measurement, using the monitor counter, of the 
tail regions in Fig. 2. The nominal errors for the data points are 
±0.15%. The solid curve is theory. 

At the exact Bragg angle, | DH | = | D0 | and there will 
be a node or antinode (=fc sign) at the planes. (For the 
7r polarization, no zero node will exist because the co
efficient of the cosine will have a factor of cos20.) The 
boundary conditions of the problem are such that the 
amplitudes of the internal waves equal that of the ex
ternal waves so the | DH/Do |2 is just the ratio of primary 
to diffracted energies, or R2 in Eq. (14). That portion 
of (18) which gives the intensity at the atoms and hence 
determines the emitted fluorescence is therefore pro
portional to 

1±2R/(1+R2). (19) 

It is easy to see from (19) why the diffracted energy 
goes to zero much faster than the fluorescence goes to 
its background. Suppose that the glancing angle cor
responds to a reflected intensity of only 1%; i.e., 
R2=0.01. It follows from (19), that the intensity at the 
atoms is approximately proportional to (1±0.2) for 
the two branches whereas if no diffraction took place 
it should be proportional to unity. The crux of the 
matter is that the diffracted energy is proportional to 
the square of the amplitude while the intensity modula
tion at the atoms goes only as the amplitude. Thus, the 
reflected energy can be very small while the energy at 
the atoms departs considerably from the value when the 
reflected energy is zero, and a long fluorescence tail is 
to be expected. 

It became clear in the course of the computation that 
the depression or enhancement of the fluorescence in 
the tails was a function of the acceptance cone angle of 
the monitor counter. This can be illustrated in Fig. 6. 
Point A represents some average depth of penetration 
of the incident beam for the wave field tending to 
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produce an antinode at the atom [the high-angle 
region (3)] and B the corresponding point for the nodal 
field in region (1). A therefore corresponds to a glancing 
angle 0o+A0 and B to do—A0, where 0o corresponds to 
the glancing angle of the center of the diffraction region. 
The relative value of the fluorescence intensity leaving 
the crystal in direction <p from the two tail regions is 
e-fif(tA-tB)t ji is c j e a r that a s y increases, that is, as the 
fluorescence path in the crystal increases, this ratio will 
increase. As <p approaches 90°, the difference in the 
fluorescence from corresponding A0 points in regions (1) 
and (3) will be enhanced. This suggested putting the 
fluorescence counter as indicated in Fig. 6 so as to 
accept that small amount of fluorescence that travels 
the greatest distance inside the crystal. Although the 
intensity would be considerably reduced this way, more 
detail is to be expected in the curve. An experimental 
curve is shown in Fig. 7. The asymmetry in the fluores
cence has been enhanced greatly now, even to the point 
where we clearly see an enhanced fluorescence on the 
high-angle side. This results because the origin of the 
fluorescence is now closer to the surface than when the 
crystal is not diffracting. Because of the small accept
ance angle at the counter and the larger self-absorption 
of the fluorescence, the intensity is about a factor of 100 
smaller than that in Fig. 2 and includes a relatively 
larger fraction of spurious radiation. We have computed 
the theoretical fluorescence according to Eq. (16) to 
leave the crystal between <pi—&5° and <p2—90°; i.e., 
radiation leaving within 5° of the crystal surface. These 
are given by the points in Fig. 7. A single scaling 
parameter for the intensity was used to match the 
curves relative to the fluorescence at large angle. The 
theoretical curve was then translated so that the asymp
totic value was the same as the experimental one. The 
agreement between theory and experiment is excellent. 
The theoretical curves were also computed for the 
(Pi-<P2 angular ranges 80° to 90° and 88.5° to 90°. 

^ 1 0 - 2 0 /DIFFRACTED FLUORESCENCE 
. \ SEC / BEAM -.COUNTER 

• ? V i ^ \ < J 

FIG. 6. Ray paths for two beams, one on each side of the actual 
Bragg angle. The higher angle ray A suffers a greater than normal 
absorption and hence creates its fluorescence closer to the crystal 
surface than the low-angle ray B, 

FLUORESCENCE 
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I _J I I I 1 I I 1 
40 30 20 10 0 10 20 30 40 
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FIG. 7. Fluorescence curve with the counter arranged as in 
Fig. 6 to accept only the fluorescence making a small angle with 
the crystal surface. The theory points are computed from Eqs. (3) 
and (16), with *>i = 85° and <p2 = 90°. 

These curves have substantially the same shape as the 
one plotted in Fig. 7 for the tail regions. The only dif
ferences occur in the narrow region of the peak and dip 
where the crystal is diffracting strongly. 

SUMMARY AND CONCLUSION 

We have used the fluorescence radiation leaving the 
crystal during a diffraction process as a probe to meas
ure the x-ray wave field inside the crystal. The fluores
cence curves show explicit effects due to the two types 
of standing x-ray wave fields corresponding to the two 
branches of the dispersion surface. The shape of the 
fluorescence curve was shown to agree very well with 
the dynamical theory. 

The fluorescence measurement in symmetric Bragg 
reflection shows up all the basic features of the disper
sion surface. As opposed to the thick crystal Borrmann 
effect where only one branch is active, the reflection 
experiment traces out the motion of a tie point from one 
branch to the other, and includes the imaginary solution 
between the two branches leading to the damped wave 
in the crystal. For this reason, the fluorescence measure
ment might prove valuable from a pedagogical 
standpoint. 

This fluorescence experiment using x rays is similar 
to a neutron diffraction work performed by Knowles10 

who investigated an enhanced x-ray output when a 
calcite crystal was set for anomalous transmission. In 
that case, the fluorescence was the result of a nuclear 
n-y reaction. 
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